YAJL-Fort Documentation
Release 1.0

Neil N. Carilson

Mar 24, 2018

Contents:

1 Building
2 The yajl_fort module

3 The json module

15

YAJL-Fort Documentation, Release 1.0

The YAJL-Fort package provides a modern object-oriented Fortran interface to the YAJL C library, which is an event-
driven parser for JSON data streams. JSON is an open standard data interchange format. It is light weight, flexible,
easy for humans to read and write, and language independent.

Note that unlike most other JSON libraries, YAJL does not provide or impose an in-memory data structure represen-
tation of the JSON data. That is left to higher-level application code through custom parsing event callback functions.

Also included in YAJL-Fort is a module that defines data structures for representing arbitrary JSON data, and proce-
dures built on the YAJL interface for populating the data structures with JSON data read from a file or string.

YAJL-Fort is open source software, distributed under the MIT license.

Get YAJL-Fort on GitHub: https://github.com/nncarlson/yajl-fort

Contents: 1

http://www.json.org/
https://github.com/nncarlson/yajl-fort

YAJL-Fort Documentation, Release 1.0

2 Contents:

CHAPTER 1

Building

Prerequisites:
e CMake version 3.1 or newer.

* YAJL 2.0.1 or newer. You need both the library and the header files. This is a standard binary package in most
any Linux distribution. Note that the header files are often in a separate “devel” package. The source can be
downloaded from https://github.com/lloyd/yajl/releases if you must build the library yourself.

* A Fortran compiler that supports the 2003/2008 features used by YAJL-Fort, and its companion (or a compatible)
C compiler.

Clone the YAJL-Fort source repository with SSH:

’git clone git@github.com:nncarlson/yajl-fort.git ‘

or with HTTPS:

’git clone https://github.com/nncarlson/yajl-fort.git ‘

Set your FC and CC environment variables to your Fortran and C compilers. If YAJL is not in a standard location
you will also need to set your YAJL_ROOT environment variable to the root directory of the YAJL installation. Then
create a build directory and run cmake from the directory:

cd yajl-fort
mkdir build
cd build
cmake ..

CMake should find your compilers with the help of the FC and CC variables. The default is to configure a Release
build. Some CMake variables you might want to set on the cmake command line:

e CMAKE_BUILD_TYPE: to specify a Debug build type, for example
* CMAKE_Fortran_FLAGS: additional Fortran compiler flags

e CMAKE_INSTALL_PREFIX: where to install the library and module files

https://github.com/lloyd/yajl/releases

YAJL-Fort Documentation, Release 1.0

Then compile the library and tests, and run the tests (all should pass):

make
ctest

Then see the documentation for the yajl_fort and json modules and the examples therein.

1.1 Compiler status and notes

The following compilers are known to work:
* NAG 5.3.2,6.0,6.1, and 6.2
* Intel 16.0.2, 17.0.6, 18.0.1
* GFortran 6.4.1,7.2.1,7.3.1, 8.0.1 (20180311 trunk)
e IBM xIf 15.1.6 (use the x1f2008 executable)
The following compilers are known to not work:
* Flang (5.0.1, b356fc9b, 20180316 master)
* Any PGI up to and including 18.1.1
— yajl_fort module may be usable for 18.1.1, but no earlier version.
— See test case pgi-20180320.f90 for bug affecting json module.

The CMakeLists.txt file has special stanzas for some compilers that set specific flags that are known to be needed.
If you are using another compiler it too may need some special flags. These can be set on the cmake command line
with CMAKE_Fortran_FLAGS or a stanza can be added to the CMakeLists.txt file.

4 Chapter 1. Building

https://github.com/nncarlson/fortran-compiler-tests/blob/master/pgi-bugs/pgi-20180320.f90

CHAPTER 2

The yajl_fort module

The yajl_fort module defines an object-oriented Fortran interface to the YAJL C library, which is an event-driven
parser for JSON data streams. JSON is an open standard data interchange format. It is lightweight, flexible, easy for
humans to read and write, and language independent.

Note: Unlike most other JSON libraries, YAJL does not provide or impose an in-memory data representation,
but instead uses callbacks to accommodate any in-memory representation. The same is true of yajl_fort, being
only an interface to YAJL. If you want an in-memory representation (and you most likely do), you may do so using
yvajl_fort, but you provide the code that defines and populates the in-memory representation using the callbacks
according to your specific requirements.

2.1 Synopsis

’ use yajl_fort

Derived types fyajl_callbacks (abstract), fyajl_parser, fyajl_status
Functions fyajl_get_error, fyajl_status_to_string
Parameters
e callback return: FYAJL_CONTINUE_PARSING, FYAJL_TERMINATE_PARSING
e kind: FYAJL_INTEGER_KIND, FYAJL_REAL_KIND
¢ parserreturn: FYAJL_STATUS_OK,FYAJL_STATUS_ERROR,FYAJL_STATUS_CLIENT_CANCELED

* option: FYAJL_ALLOW_COMMENTS, FYAJL_ALLOW_MULTIPLE_DOCUMENTS,
FYAJL_ALLOW_PARTIAL_DOCUMENT, FYAJL_ALLOW_TRAILING_GARBAGE,
FYAJL_DONT_VALIDATE_STRINGS

http://www.json.org/

YAJL-Fort Documentation, Release 1.0

2.1.1 Prerequisites

The yajl_fort module uses YAJL version 2.0 or later. The source code for this library can be downloaded from
https://github.com/lloyd/yajl/releases. The library is also available as a standard binary package in all major Linux
distributions. See http://lloyd.github.io/yajl/ for additional information.

2.2 Parser callback functions

2.2.1 JSON overview

The JSON data language is quite simple. It is built on two basic data structures. An array is an ordered list of comma-
separated values enclosed in brackets ([and]). An object is an unordered list of comma-separated name : value
pairs enclosed in braces ({ and }). A name is a string enclosed in double quotes, and a value is one of the following: a
string in double quotes, a number (integer or real), a boolean literal (t rue or false), the literal null, or an object
or array. Note how the data structures can be nested. Whitespace is insignificant except in strings. At the outermost
level, what is considered valid JSON text varies between the several standard documents, and it comes down to a
matter of agreement between the producer and consumer of the data. Originally it was required to be an object or
array, but more recently any JSON value is considered valid. The YAJL library follows the latter. See this blog post
for a discussion of the issue, and http://www.json.org for a detailed description of the JSON syntax.

2.2.2 The callbacks derived type

The C language YAJL parser operates by calling application-defined callback functions in response to the various
events encountered while parsing the input stream. The callback functions communicate with each other through
a common, application-defined, context data struct, and a void pointer to that data struct is passed to each of the
callbacks. In this Fortran interface, this application-defined code/data is implemented by the abstract derived type
fyajl_callbacks:

type, abstract :: fyajl callbacks

contains
procedure (cb_no_args), deferred :: start_map
procedure (cb_no_args), deferred :: end_map
procedure (cb_string), deferred :: map_key
procedure (cb_no_args), deferred :: null_value
procedure (cb_logical), deferred :: logical_value
procedure (cb_integer), deferred :: integer_value
procedure (cb_double), deferred :: double_value
procedure (cb_string), deferred :: string_value
procedure (cb_no_args), deferred :: start_array
procedure (cb_no_args), deferred :: end_array

end type fyajl_callbacks

Application code extends this type, adding the desired context data components and providing concrete implementa-
tions of the callback functions. The required interfaces for the deferred type bound callback functions are:

integer function cb_no_args (this)

class (fyajl_callbacks) :: this
integer function cb_integer (this, wvalue)

class (fyajl_callbacks) :: this

integer (FYAJL_INTEGER_KIND), intent (in) :: value
integer function cb_double (this, wvalue)

class (fyajl_callbacks) :: this

real (FYAJL_REAL_KIND), intent (in) :: wvalue

6 Chapter 2. The yajl_fort module

https://github.com/lloyd/yajl/releases
http://lloyd.github.io/yajl/
https://www.mattlunn.me.uk/blog/2014/01/what-is-the-minimum-valid-json/
http://www.json.org

YAJL-Fort Documentation, Release 1.0

integer function cb_logical (this, walue)
class (fyajl_callbacks) :: this
logical, intent (in) :: value
integer function cb_string(this, wvalue)
class (fyajl_callbacks) :: this
character (», kind=c_char), intent(in) :: wvalue

The return value of each function must be either of the module parameters FYAJL_CONTINUE_PARSING or
FYAJL_TERMINATE_PARSING. The latter return value will cause the parser to terminate with an error. The module
kind parameters for integer and real values, FYAJL_INTEGER_KIND and FYAJL_REAL_KIND, correspond to C’s
long long and double, and are dictated by the YAJL library. The callbacks are invoked as follows:

start_map called when a { is parsed, marking the start of an object
end_map called when a } is parsed, marking the end of an object.
start_array called when a [is parsed, marking the start of an array.
end_array called when a] is parsed, marking the end of an array.

map_key called when the name of a name : value pair is parsed, and the parsed name string is passed
to the function.

integer_value called when an integer value is parsed, and the value is passed to the function.
double_value called when a real value is parsed, and the value is passed to the function.
string_value called when a string value is parsed, and the value is passed to the function.

logical_value called when the value token true or false is parsed, and the corresponding For-
tran logical value is passed to the function.

null_value called when the value token null is parsed.

2.3 Parsing

The derived type fyajl_parser and its type bound procedures implement the JSON parser. First, as described in
the previous section, an application-specific extension of the abstract type fyajl_callbacks must be defined and
an instance (here callbacks) of that extension initialized:

type, extends(fyajl_callbacks) :: my_callbacks
! context data defined here
contains
! define the deferred type bound procedures
end type
type (my_callbacks), target :: callbacks

! initialize the context data of callbacks as needed

The parser is then initialized by passing the callbacks object to its init subroutine:

type (fyajl_parser) :: parser
call parser%$init (callbacks)

Note that proper finalization of the parser object occurs automatically when the object is deallocated or otherwise
ceases to exist. Finalization of the callback object is the responsibility of the application.

Parsing is carried out incrementally via repeated calls to the parse method:

2.3. Parsing 7

YAJL-Fort Documentation, Release 1.0

call parser%parse (buffer, stat)
character (kind=c_char), intent (in) :: buffer(:)
type (fyajl_status), intent (out) :: stat

Successive chunks of the JSON text are passed in the buf fer array, and the parsing status is returned in stat; see
Error handling.

After all the JSON text has been fed to the parser, the parse_complete method must be called to parse any
internally buffered JSON text that might remain:

call parser%$parse_complete (stat)
type (fyajl_status), intent (out) :: stat

This is required because the parser is stream based and it needs an explicit end-of-input signal to force it to parse
content at the end of the stream that sometimes exists. The parsing status is returned in stat; see Error handling.

The function call parser$bytes_consumed () returns the number of characters consumed from buffer in the
last call to parse.

2.3.1 Error handling

The parse and parse_complete methods return a type (fyajl_status) status value, which equals one of
the following module parameters:

FYAJL_STATUS_OK No error.

FYAJL_STATUS_ERROR A parsing error was encountered; use fyajl_get_error to get information about it.

FYAJL_STATUS CLIENT CANCELLED One of the callback procedures returned
FYAJL_TERMINATE_PARSING

The comparison operators == and /= are defined for type (fyajl_status) values.

Several additional functions (not type bound) are provided for error handling.

fyajl_get_error (parser, verbose, buffer)
logical, intent (in) :: verbose
character (kind=c_char), intent (in) :: buffer(:)

Returns a character string describing the the error encountered by the parser. If verbose is true, the message will in-
clude the portion of the input stream where the error occurred together with an arrow pointing to the specific character.
The buf fer array should contain the chunk of JSON text passed in the last call to parse.

fyajl_status_to_string(code)
type (fyajl_status), intent (in) :: code

Returns a character string describing the specified status value code.

2.3.2 Parsing options

The parser supports several options provided by the YAJL library. They are set and unset using the set_option and
unset_option methods after the parser has been initialized:

call parser%$set_option (option)
call parser%unset_option (option)

where option is one of the following module parameters. The default for all is unset.

8 Chapter 2. The yajl_fort module

YAJL-Fort Documentation, Release 1.0

FYAJL_ALLOW_COMMENTS JSON does not allow for comments. Setting this option causes the parser to ignore
javascript style comments in the input stream. This includes single-line comments that begin with // and
continue to the end of the line. This is a very useful extention to the JSON standard, but one that is not supported
by many JSON parsers.

FYAJL_DONT_VALIDATE_STRINGS By default, the parser verifies that all strings are valid UTF-8. This option
disables this check, resulting in slightly faster parsing.

FYAJL_ALLOW_TRAILING_GARBAGE By default, parse_complete verifies that the entire input text has been
consumed and will return an error if it finds otherwise. Setting this option will disable this check. This can
be useful when parsing an input stream that contains more than one JSON document. In such scenarios, the
bytes_consumed method is useful for identifying the trailing portion of the input text for subsequent han-
dling.

FYAJL_ALLOW_MULTIPLE_DOCUMENTS An instance of a parser normally expects that the input stream consists
of a single JSON document. Setting this option changes that behavior and allows an instance to parse an input
stream containing multiple documents that are separated by whitespace.

FYAJL_ALLOW_PARTIAL_DOCUMENT By default, parse_complete verifies that the top level object is com-
plete; that is, the closing } has been parsed. If it finds otherwise it returns an error. Setting this option disables
this check.

2.4 Examples

In addition to the simple example presented below, here are some links to genuine uses of yajl_fort:

* The json module included in YAJL-Fort defines structures for in-memory representation of arbitrary JSON data,
and procedures for populating the structures with JSON data read from a file or string using yajl_fort.

e The parameter_list_type module from the Petaca library defines a hierarchical data structure that is
very similar to JSON, but that is much better suited to Fortran use. A subset of JSON maps naturally to this
data structure, and the parameter_list_json module provides procedures built on yajl_fort for populating
this structure with JSON data read from a file or string. This illustrates a major advantage of the customized
callback approach, in that the callbacks implement the grammar of this JSON subset so that syntax errors are
detected promptly during parsing.

2.4.1 A JSON white space stripper

This simple program reads JSON text from a file, strips all insignificant white space from it, including newlines, and
writes the result to standard output. Somewhat contrived, but it serves to illustrate how to use yajl_fort in a
complete program. No in-memory representation of the JSON data is needed in this case; it is streamed to the output
as it is being parsed. The only slightly complicated aspect, requiring some context data, is keeping track of when the
, separator needs to be written. The source for this example is in test/strip.fo0

The module strip_cb_type defines the callback structure. The callback functions merely echo their respective
token to the output. However the _value and map_key functions must first write a , if the value follows a value
in an array list, or if the key follows a key:value pair in an object list. The hierarchical structure of JSON means that at
any moment of the parsing there may be multiple array or object lists in the process of being parsed. To keep track for
each list of whether a comma is needed or not, we use a stack. Here we just use a fixed length logical array comma and
an integer index top that points to the top of the stack. These are the common context data shared by the callbacks.
The subroutines push, pop, and write_comma take care of managing the stack.

module strip_cb_type

use, intrinsic :: iso_fortran_env, only: output_unit

2.4. Examples 9

https://github.com/nncarlson/petaca
https://github.com/nncarlson/petaca/blob/master/src/parameter_list_json.F90
https://github.com/nncarlson/yajl-fort/blob/master/test/strip.f90

YAJL-Fort Documentation, Release 1.0

use yajl_fort
implicit none

private

type, extends (fyajl_callbacks), public strip_cb
integer top = 1
logical comma (99) = .false.

contains
procedure start_map
procedure end_map
procedure map_key
procedure null_value
procedure logical_value
procedure integer_value
procedure double_value
procedure string_value
procedure start_array
procedure end_array

end type

contains

subroutine push (this)

class (strip_cb), intent (inout) this
this%top = this%top + 1
this%comma (this%top) = .false. ! start of new list
end subroutine
subroutine pop (this)
class (strip_cb), intent (inout) this
this%top = this%top - 1
end subroutine
subroutine write_comma (this, next)
class (strip_cb), intent (inout) this
logical, intent (in) next
if (this%comma (this%top)) write (output_
this%comma (this%top) = next

end subroutine

integer function null_value(this) result (stat)
class (strip_cb) this
call write_comma (this, next=.true.)
write (output_unit, ' ("null")',advance="no')
stat = FYAJL_CONTINUE_PARSING

end function

integer function logical_value(this, walue) result (stat)
class (strip_cb) this
logical, intent (in) value
call write_comma (this, next=.true.)
if (value) then
write (output_unit, ' ("true")',advance="no')
else
write (output_unit, ' ("false")',advance="no'")
end if
stat = FYAJL_CONTINUE_PARSING

end function

unit, ' (",")',advance="no')

10

Chapter 2. The yajl_fort module

YAJL-Fort Documentation, Release 1.0

integer function integer_value(this, wvalue) result (stat)

class (strip_cb) :: this

integer (fyajl_integer_kind), intent (in) :: wvalue
call write_comma (this, next=.true.)

write (output_unit, ' (10)',advance="'no') wvalue

stat = FYAJL_CONTINUE_PARSING
end function

integer function double_value(this, wvalue) result (stat)

class (strip_cb) :: this

real (fyajl_real_kind), intent (in) :: wvalue
call write_comma (this, next=.true.)

write (output_unit, ' (g0)',advance="no') wvalue

stat = FYAJL_CONTINUE_PARSING
end function

integer function string_value (this, wvalue) result (stat)

class (strip_cb) :: this

character (x), intent (in) :: wvalue

call write_comma (this, next=.true.)

write (output_unit, ' (3a)',advance='no') '"', wvalue, '"'

stat = FYAJL_CONTINUE_PARSING
end function

integer function map_key (this, value) result (stat)

class (strip_cb) :: this

character(+), intent (in) :: value

call write_comma (this, next=.false.) ! no comma for next value
write (output_unit, ' (3a)',advance='no') '"', wvalue, '":'

stat = FYAJL_CONTINUE_PARSING
end function

integer function start_map (this) result (stat)

class (strip_cb) :: this

call write_comma (this, next=.true.)
write (output_unit, ' ("{")',advance="'no'")
call push(this) ! starting new 1list

stat = FYAJL_CONTINUE_PARSING
end function

integer function end_map (this) result (stat)

class (strip_cb) :: this
write (output_unit, ' ("}")',advance="no'")
call pop(this) ! finished this 1list

stat = FYAJL_CONTINUE_PARSING
end function

integer function start_array(this) result (stat)

class (strip_cb) :: this

call write_comma (this, next=.true.)
write (output_unit, ' ("[")',advance='no')
call push(this) ! starting new list

stat = FYAJL_CONTINUE_PARSING
end function

integer function end_array(this) result (stat)
class (strip_cb) :: this

2.4. Examples 11

YAJL-Fort Documentation, Release 1.0

write (output_unit, ' ("]")"',advance="'no'")
call pop(this) ! finished this 1list
stat = FYAJL_CONTINUE_PARSING

end function

end module

The main program opens the file specified on the command line for unformatted stream input, and then reads and
parses buffer-sized chunks until the whole file has been read. This is a pattern most any use of yajl_fort will
follow.

program strip_json

use, intrinsic :: iso_fortran_env
use yajl_fort

use strip_cb_type

implicit none

integer :: ios, lun, last_pos, curr_pos, buflen

character (64) :: arg

character(:), allocatable :: file

character :: buffer(64) ! intentionally small buffer for testing
type (strip_cb), target :: callbacks

type (fyajl_parser), target :: parser

type (fyajl_status) :: stat

'l Get the file name from the command line
if (command_argument_count () == 1) then
call get_command_argument (1, arg)
file = trim(arg)

else
call get_command (arg)
write (error_unit, ' (a)') 'usage: ' // trim(arg) // ' file'
stop

end if

'l Open the file for stream Input
open (newunit=lun, file=file, action="'read',access="stream')
inquire (lun,pos=last_pos)

!'l Initialize the parser with our callback functions
call parser%init (callbacks)
call parser$set_option (FYAJL_ALLOW_COMMENTS)

do
'l Read the next chunk of the input file
read (lun, iostat=ios) buffer
if (ios /= 0 .and. ios /= iostat_end) then
write (error_unit, '(a,i0)') 'read error: iostat=', ios
exit
end if

'l Feed the chunk to the parser and check for errors.
inquire (lun, pos=curr_pos)
buflen = curr_pos - last_pos
last_pos = curr_pos
if (buflen > 0) then
call parser$%parse (buffer (:buflen), stat)

12 Chapter 2. The yajl_fort module

YAJL-Fort Documentation, Release 1.0

if (stat /= FYAJL_STATUS_OK) then
write (error_unit, '(a)') &
fyajl_get_error (parser, .true.,
exit
end if
end if

'l If there are no more chunks to read,
if (ios iostat_end) then
call parser%complete_parse (stat)

if (stat /= FYAJL_STATUS_OK) then
write (error_unit,'(a)') &
fyajl_get_error (parser, .false.,
end if
exit
end if
end do

close (lun)

end program

buffer (:buflen))

tell the parser.

buffer (:buflen))

2.4. Examples

13

YAJL-Fort Documentation, Release 1.0

14 Chapter 2. The yajl_fort module

CHAPTER 3

The json module

The json module defines derived data types for representing arbitrary JSON data, and procedures for instantiating
objects of those types from JSON text read from a file or string.

This module uses yajl_fort for parsing the JSON input data.

Note: This module is a work-in-progress. While it provides the ability to read arbitrary JSON data and represent it
in memory, it lacks many convenient methods for working with the data. Needed in particular, are methods for direct
access to values using a “path” type of indexing.

3.1 Usage

Refer to http://www.json.org for a detailed description of the JSON syntax. The derived types and terminology used
here adhere closely to that description.

The abstract type json_value represents a JSON value. The dynamic type of a polymorphic instance of this class
will be one of these extended types:

json_integer stores a JSON number without fractional part (P)
json_real stores a JSON number with fractional part (P)

json_string stores a JSON string (P)

json_boolean stores a logical for the JSON literals t rue and false (P)
json_null represents the JSON literal null (P)

json_object stores a JSON object (S)

json_array stores a JSON array (S)

The primitive types (P) have a public component $value that stores the corresponding value (except for
json_null). The content of the structure types (S) are accessed via iterator objects. For json_object values:

15

http://www.json.org

YAJL-Fort Documentation, Release 1.0

type (json_object), target :: wvalue

type (json_object_iterator) :: iter

iter = json_object_iterator (value)

do while (.not.iter%at_end()) ! order of object members is insignificant

! iter%name () 1is the name of the member
! iter%value () is a class(json_value) pointer to the value of the member
call iter%next

end do

For json_array values:

type (json_array), target :: wvalue

type (json_array_iterator) :: iter

iter = Jjson_array_iterator (value)

do while (.not.iter%at_end()) ! order of array elements xisx significant

! iter%value () is a class(json_value) pointer to the value of the element
call iter%next
end do

The following subroutines allocate and define an allocatable class (json_value) variable with JSON text read
from a string or logical unit opened for unformatted stream input.

call json_from_string(string, wvalue, stat, errmsqg)

call json_from_stream(unit, value, stat, errmsg)
character (x), intent(in) :: string
integer, intent (in) :: unit
class (json_value), allocatable, intent (out) :: wvalue
integer, intent (out) :: stat
character(:), allocatable, intent (out) :: errmsg

The argument stat returns a nonzero value if an error occurs, and in that case errmsg is assigned an explanatory
error message.

3.2 Examples

Here are some examples that use json_from_string. Examples using json_from_stream would be essen-
tially the same. Note that the st op statements identify things that should not occur.

Reading primitive JSON values:

use json

class (json_value), allocatable :: val
character(:), allocatable :: errmsg

integer :: stat

call json_from_string('42', wval, stat, errmsqg)

select type (val)
type is (json_integer)
if (val%value /= 42) stop 1
class default
stop 2
end select

call json_from_string('"foo"', val, stat, errmsqg)
select type (val)

16 Chapter 3. The json module

YAJL-Fort Documentation, Release 1.0

type is (json_string)

if (val%value /= 'foo') stop 3
class default

stop 4
end select

call json_from_string('false', val, stat, errmsqg)
if (stat /= 0) stop 51
select type (val)
type is (json_boolean)
if (val%value) stop 5
class default
stop 6
end select

call json_from_string('null', wval, stat, errmsqg)
select type (val)
type is (json_null)
class default
stop 7
end select

Reading a JSON array value and iterating through its elements:

use Jjson

class (json_value), allocatable :: val

type (json_array_iterator) :: iter

character(:), allocatable :: errmsg

integer :: stat, n

call json_from_string('[42,"foo",false,null]"', wval, stat, errmsqg)

select type (val)
type is (json_array)
n =0
iter = Jjson_array_iterator (val)
do while (.not.iter%at_end())
n=n+ 1
select type (ival => iter$value())
type is (json_integer)
if (n /= 1) stop 1
if (ival%value /= 42) stop 2
type is (json_string)
if (n /= 2) stop 3
if (ival%value /= 'foo') stop 4
type is (json_boolean)
if (n /= 4) stop 5
if (ival%value) stop 6
type is (json_null)
if (n /= 5) stop 7
class default
stop 8
end select
call iter%next
end do
class default
stop 9

3.2. Examples 17

YAJL-Fort Documentation, Release 1.0

end select

Reading a JSON object value and iterating through its members:

use Jjson

class (json_value), allocatable :: val

type (json_object_iterator) :: iter

character(:), allocatable :: errmsg

integer :: stat

call json_from_string('{"a":42,"b":"foo","c":false}', val, stat, errmsqg)

select type (val)
type is (json_object)
iter = json_object_iterator (val)
do while (.not.iter%at_end())
select type (ival => iter%value())
type is (json_integer)
if (iter%name() /= 'a') stop 1
if (ival%value /= 42) stop 2
type is (json_string)

if (iter%name() /= 'b') stop 3

if (ival%value /= 'foo') stop 4
type is (json_boolean)

if (iter%name() /= 'y') stop 6

if (ival%value) stop 6
class default
stop 7
end select
call iter%next
end do
class default
stop 8
end select

Error handling with invalid JSON:

use json

class (json_value), allocatable :: val

integer :: stat

character(:), allocatable :: errmsg

call json_from _string('[1,2,fo0,3]"', val, stat, errmsqg)
if (stat == 0) stop 1 ! should have been an error

write (%,) errmsg

This produces this error output when run:

lexical error: invalid string in Jjson text.
[1,2,foo, 3]
(right here) -————-

18 Chapter 3. The json module

	Building
	The yajl_fort module
	The json module

